Error bounds for quasi-Monte Carlo integration with uniform point sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds for quasi-Monte Carlo integration with nets

We analyze the error introduced by approximately calculating the s-dimensional Lebesgue measure of a Jordan-measurable subset of Is = [0, 1)s. We give an upper bound for the error of a method using a (t,m, s)-net, which is a set with a very regular distribution behavior. When the subset of Is is defined by some function of bounded variation on Īs−1, the error is estimated by means of the variat...

متن کامل

Error trends in Quasi-Monte Carlo integration

Several test functions, whose variation could be calculated, were integrated with up tp 10 trials using different low-discrepancy sequences in dimensions 3, 6, 12, and 24. The integration errors divided by the variation of the functions were compared with exact and asymptotic discrepancies. These errors follow an approximate power law, whose constant is essentially given by the variance of the ...

متن کامل

Error in Monte Carlo, quasi-error in Quasi-Monte Carlo

While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the abscence of a reliable way to estimate that error. The standard Monte Carlo error estimator relies on the assumption that the points are generated independently of each other and, therefore, fails to account ...

متن کامل

Monte-Carlo and Quasi-Monte-Carlo Methods for Numerical Integration

We consider the problem of numerical integration in dimension s, with eventually large s; the usual rules need a very huge number of nodes with increasing dimension to obtain some accuracy, say an error bound less than 10−2; this phenomenon is called ”the curse of dimensionality”; to overcome it, two kind of methods have been developped: the so-called Monte-Carlo and Quasi-Monte-Carlo methods. ...

متن کامل

Control Functionals for Quasi-Monte Carlo Integration

Quasi-Monte Carlo (QMC) methods are being adopted in statistical applications due to the increasingly challenging nature of numerical integrals that are now routinely encountered. For integrands with d-dimensions and derivatives of order α, an optimal QMC rule converges at a best-possible rate O(N−α/d). However, in applications the value of α can be unknown and/or a rate-optimal QMC rule can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2003

ISSN: 0377-0427

DOI: 10.1016/s0377-0427(02)00665-9